3.9 Differentials

WCID? I can compute the propagated error of measurements using differentials

- A. <u>Differential</u>- the amount of error in measurements in applications of mathematics
 - 1. Scientists approximate this error by the symbol ΔV , where the blank space is filled by a symbol indicating the quantity measured

Ex: ΔV for the error in Volume

2. To find this error...think:

$$\frac{dx}{dx} = f'(x) dx$$

$$\frac{dy}{dx} = f'(x) dx$$

$$\frac{dy}{dx} = f'(x) dx$$

- **We now let dy be approximately the same as Δy
- 3. Set up the derivative, and then fill in the blanks

Ex: Let $y = x^2$. Find dy when x = 1 and dx = 0.01 dy : f'(x) dx $dy = \partial x \cdot dx$ $dy = \partial (x) \cdot (x)$ $dy = \partial (x) \cdot (x)$ $dy = \partial (x) \cdot (x)$ $dy = \partial (x) \cdot (x)$

Ex. Let $y = x^3$. Find dy when x = 4 and dx = 0.02

dy: f(x)dx dy: 3x2dx dy: 3(4)(02)=.96

B. This is also called error propagation

1. dx can be used to indicated the acceptable amount of error

Ex: The radius of a ball bearing is measured to be 0.07 in., with allowable error of 0.01 in. Find the propagated error in the Volume of the ball bearing.

HW: p. 240 7-10, 11-14, 27-30