4.1 Antiderivatives

WCID? I can take the antiderivative of a function

A. Take the derivative of each of the following:

1.
$$f(x) = x^3$$
 $\int (x)^2 - 3x^2$

2.
$$f(x) = x^3 + 7$$
 $\{ (x) = 3x^2 \}$

3.
$$f(x) = x^3 - 125$$
 $\int (x)^{-3} 3x^3$

What do you notice?

- B. We will start to do derivatives backwards called antiderivatives
 - 1. Many functions have the same derivative. Usually they differ by a constant
 - When we take an antiderivative, it will have this constant shown by "C"

3. Notation:
$$\int f(x) = F(x) + C$$
$$\int f(x) dx = \overline{f}(x) + C$$

4. Since "C' can be anything, this is called a general solution

C. How to take an antiderivative:→How do you take a derivative????

**JUST DO THIS BACKWARDS!!!!

- 1. Increase the power
- 2. Divide by the new power

Ex:
$$f(x) = x^3$$
 $\int_{1}^{3} dx = \frac{x^4}{4} + C$

Ex:
$$f(x) = x^4 + 2x^2 + 7x$$

$$\int_{X}^{4} + 2x^2 + 7x dx$$

$$\frac{x^5}{5} + \frac{2x^3}{3} + \frac{7x^2}{2} + C$$

Ex:
$$f(x) = 3x^5 - 4x^3 - 11x^2$$

$$\int 5x^5 - 4x - 11x^3 + C$$

$$\int 5x^5 - 4x - 11x^3 + C$$

$$\int 5x^5 - 4x - 11x^3 + C$$

Ex: $f(x) = \cos x \rightarrow THINK$: What did you take the derivative of????? $\int_{COS} \chi d\chi = Sin\lambda + C$

Ex:
$$f(x) = \sec^2 x$$

D. Special Cases

1.
$$\int 0 dx = C$$

2.
$$\int kdx = kx + C$$
 $\int \int dx = \int x + C$

3.
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx + C$$

- 4. $\int x_{n+1}^{n} = \frac{x^{n+1}}{n+1} + C \rightarrow \text{THIS IS WHAT}$ WE DID EARLIER
- 5. $\int kf(x)dx = k \int f(x) \rightarrow \text{Constant}$ Multiple Rule

Examples: Take the Antiderivative of each of the following

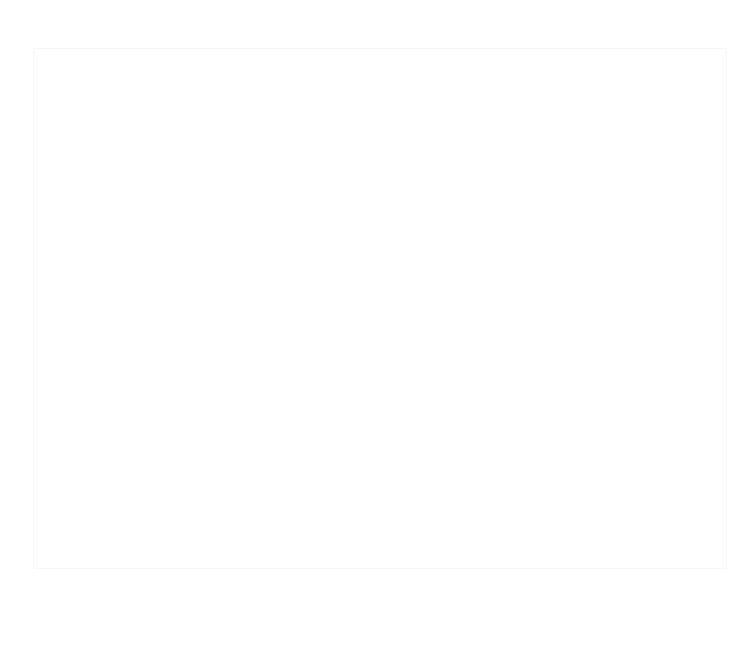
$$\int x^{-4} dx \qquad \frac{1}{3} + C \qquad \frac{1}{3\sqrt{8}} + C$$

$$\int (x^3 + \cos x) dx \qquad \frac{\chi^4}{4} + \sin \chi + C$$

$$\int (4 \sec x \tan x + 3x^2) dx$$

$$4 \sec x + x^3 + C$$

$$\int (x+3)(x-5)dx$$


$$\int (x^3-2x-15)dx = \frac{x^3}{3} - x^2 - (5x+0)$$

$$\int x^{2}(1-x^{3})dx$$

$$\int (x^{3}-x^{3})dx = \frac{x^{3}}{3} - \frac{x^{6}}{6} + C$$

$$\int \left(\frac{x+1}{\sqrt{x}}\right) dx \qquad \frac{3/2}{3} + \frac{2}{2} + \frac{2}{3} + \frac{2}{3}$$

HW: p.255 1,2, 15-33 odd, 35-40

